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Harmonic Oscillator in External Fields:
Applications to Trapped Bosons and Fermions
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Properties of harmonic oscillator in external fields are studied. The formalism developed
is applied to a harmonic oscillator in a nonhomogeneous gravitational field. Partition
functions and thermodynamic potentials for trapped Bose and Fermi gases are found.
Thermodynamics of trapped Bosons and Fermions in external fields is discussed.
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1. INTRODUCTION

The model of the harmonic oscillator plays a very important part and has
numerous applications in quantum physics. Harmonic oscillators describe such
processes as oscillations of molecules and atoms in solids, vibration of the sur-
face of the spherical atomic nuclei. Properties of light and theory of radiation
are also described by infinite collection of oscillators. These results are presented
in a number of publications. The theory of the harmonic oscillator is effectively
used for the study of the properties of confined alkali atoms in harmonic traps
(Butts and Rokhsar, 1997; Dalfovoet al., 1999; Grossmann and Holthaus, 1995).
In this work the model of harmonic oscillator in formalism of creation and anni-
hilation operators in external fields is developed. The behavior of the oscillator in
constant (homogeneous) and variable (nonhomogeneous) fields is studied. As an
application, a model of harmonic oscillator in external gravitational field is con-
sidered. The developed formalism is applied for the study of thermal properties
of noninteracting Bose and Fermi gases in harmonic traps. The paper is organized
in the following way. In Section 2 the general formalism of harmonic oscillator
is considered. Section 3 is devoted to the properties of a harmonic oscillator in a
homogeneous and nonhomogeneous electric field. These results allow us to formu-
late clearly the harmonic oscillator problem in three-dimensional nonhomogeneous
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gravitational field in Newtonian approximation. In Section 4 the partition func-
tions and grand thermodynamic potentials of trapped Bose and Fermi ensembles
are calculated. Thermodynamical properties of trapped Bosons and Fermions are
discussed in Section 5.

2. GENERAL FORMALISM

Let us consider quantum mechanics of simple one-dimensional harmonic
oscillator. One-dimensional Hamiltonian of the harmonic oscillator has the form

H = p2

2m
+ mω2x2

2
, (1)

wherem is the mass, andω is the angular frequency of the oscillator. The relation
between the angular frequencyω and the spring constantk of the oscillator is
written asω2 = k/m. The purpose of this section is to proceed along with the usual
steps to quantize the classical harmonic oscillator with creation and annihilation
operator formalism. Introducing the well-known two dimensionless annihilation
and creation operators

a =
(

mω

2h

)1/2(
x + i p

mω

)
,

(2)

a+ =
(

mω

2h

)1/2(
x − i p

mω

)
,

with commutation properties

[a, a+] = 1, [a, a] = [a+, a+] = 0, (3)

one can write the equation for the Hamiltonian (1) (Landay and Lifshitz, 1975) as

H = hω

2
[aa+ + a+a] = hω

[
a+a+ 1

2

]
. (4)

The Hamiltonian (4) with three commutators (3) completely describes the har-
monic oscillator in terms of creation and annihilation operators. Creation and an-
nihilation operators act on eigenvectors|n〉 of the Hamiltonian (4) according to the
following rulesa+|n〉 = √n+ 1|n+ 1〉, a|n〉 = √n|n− 1〉, and matrix elements
of these operators are

〈n′|a+|n〉 = (n+ 1)1/2δn′,n+1,
(5)

〈n′|a|n〉 = n1/2δn′,n−1.

The eigenvaluesn of the operatora+a are the positive integers and zero, that
means that the Hamiltonian (4) is diagonal in the representation of occupation
numbers andHn = hω(n+ 1/2). The producta+a is treated as a number operator



P1: GDW/GCZ P2: GCV

International Journal of Theoretical Physics [ijtp] pp543-ijtp-376829 July 12, 2002 17:13 Style file version May 30th, 2002

Harmonic Oscillator in External Fields 1283

for excitations of the oscillator. The position and momentum operators can be
expressed from the Eq. (2) as

x =
(

h

2mω

)1/2

(a+ + a),

(6)

p = i

(
hmω

2

)1/2

(a+ − a).

Matrix elements for these operators are written as

〈n′|x|n〉 =
(

h

2mω

)1/2 [
(n+ 1)1/2δn′,n+1+ n1/2δn′,n−1

]
,

(7)

〈n′|p|n〉 = i

(
hmω

2

)1/2 [
(n+ 1)1/2δn′,n+1− n1/2δn′,n−1

]
,

and have no diagonal elements. Time dependence of annihilation and creation
operators is found with the Heisenberg equation. For an operatorO(t) = ei Ht /hO
e−i Ht /h time development ofO(t) can be written as

∂O(t)

∂t
= i

h
[H, O(t)]. (8)

In the case of annihilation and creation operators the Eq. (8) gives

∂a(t)

∂t
= −iωa(t),

(9)
∂a+(t)

∂t
= iωa+(t).

The solutions of (9) are written as

a(t) = e−iωta,
(10)

a+(t) = eiωta+,

wherea = a(0), a+ = a+(0) are given at the momentt = 0. Then the position and
the momentum operators (6) in time dependent form will be

x(t) =
(

h

2mω

)1/2

(eiωta+ + e−iωta),

(11)

p(t) = i

(
hmω

2

)1/2

(eiωta+ − e−iωta).
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3. HARMONIC OSCILLATOR IN EXTERNAL FIELDS

3.1. Electric Field

Let us consider the harmonic oscillator in external fields. For the simplicity
we will consider the constant electric fieldE. The Hamiltonian of the harmonic
oscillator in external field of a constant intensity may be written in the form

H = p2

2m
+ mω2x2

2
+ eEx= hω

[
a+a+ 1

2

]
+ eE

(
h

2mω

)1/2

(a+ + a), (12)

wheree is the charge of the harmonic oscillator. Denotingζ = eE(h/2mω)1/2, we
obtain

H = hω

[
a+a+ 1

2

]
+ ζ (a+ + a). (13)

Time evolution for operatorsa, a+ is found from (8) and (13):

∂a(t)

∂t
= −iω

(
a+ ζ

hω

)
,

(14)
∂a+(t)

∂t
= iω

(
a+ + ζ

hω

)
.

One can define a new set of operatorsã = a+ ζ/hω, ã+ = a+ + ζ/hω and
rewrite Eq. (14) in the form

∂ã(t)

∂t
= −iωã,

(15)
∂ã+(t)

∂t
= iωã+.

Time evolution of these operators will be

ã(t) = e−iωt ã,
(16)

ã+(t) = eiωt ã+.

The operators̃a, ã+ have the same commutation relations asa, a+:

[ã, ã+] = 1, [ã, ã] = [ã+, ã+] = 0, (17)

and Hamiltonian (13) will be written in the form

H = hω

[
ã+ã+ 1

2

]
− ζ 2

hω
. (18)

The last term of the Hamiltonian (18) indicates the energy shift due to the interac-
tion of the oscillator with the electric field. The position operator is easily found
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from (11) and (16):

x(t) =
(

h

2mω

)1/2(
eiωt ã+ + e−iωt ã− 2ζ

hω

)
. (19)

From the Eq. (19) we obtain the expression for the equilibrium point

x0 = − 2ζ

hω

(
h

2mω

)1/2

= − eE

mω2
. (20)

As follows from this analysis, the oscillator oscillates with the same frequency
ω but the point of equilibrium is shifted in respect with (20). Thus the
Hamiltonian (18) describes a simple harmonic motion. If the electric fieldE has
gradient inx-direction, then

E(x0+ x) = E(x0)+ d E(x0)

dx
x. (21)

The equation for Hamiltonian (12) will be

H = p2

2m
+ mÄ2

xx2

2
+ eEx, (22)

where the angular frequencyÄx is expressed as

Ä2
x = ω2

(
1+ 2e

mω2

d E(x0)

dx

)
. (23)

One can introduce creation and annihilation operatorsÃ = A+ ζ/hÄx andÃ
+ =

A+ + ζ/hÄx, whereÃ, Ã
+

are written as

A =
(

mÄx

2h

)1/2(
x + i p

mÄx

)
,

(24)

A+ =
(

mÄx

2h

)1/2(
x − i p

mÄx

)
.

The commutation relations for these operators are

[ Ã, Ã
+

] = 1, [Ã, Ã] = [ Ã
+

, Ã
+

] = 0, (25)

and the time evolution is described by the equations

Ã(t) = e−iÄxt Ã,
(26)

Ã
+

(t) = eiÄxt Ã
+
.
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The Hamiltonian of the harmonic oscillator in a nonhomogeneous electric field
will be

H = hÄx

(
Ã
+

Ã+ 1

2

)
− ζ 2

hÄx
. (27)

The position operator is written as

x(t) =
(

h

2mÄx

)1/2(
eiÄxt Ã

+ + e−iÄxt Ã− 2ζ

hÄx

)
. (28)

The Eq. (28) defines the displacement of the equilibrium pointx0 = −eE/mÄ2
x.

This result shows that displacement depends not only on the intensity of the field
but also on its gradient.

3.2. Gravitational Field

The considered example with the harmonic oscillator in electric field gives
us the direct way to extend the formalism of second quantization for the case of
a three-dimensional harmonic oscillator in an external gravitational field. Let us
assume that the harmonic oscillator interacts with a nonhomogeneous gravitational
field. The potential of this field can be written in the following form

8 EX0
(Ex) = 80− gi x

i + 1

2
0i j x

i x j , (29)

where we use Einstein summation rule and assumexi = {x, y, z}. In the Eq. (29)
the first right hand term80 is the potential of gravitational field at the equili-
brium point EX0 (the fixed parameter in our case) of the harmonic oscillator,gi =
−∂8( EX0)/∂xi is i th projection of gravitational acceleration, and0i j = ∂28( EX0)/
∂xi ∂x j is (i , j )-component of gravity gradient tensor. Let us select the coordinate
axes of the harmonic oscillator in such a way as to get the components of the vector
of gravitational acceleration in the form

gx = 0, gy = 0, gz = −|Eg|. (30)

In this approximation the leading components of the gravity gradient tensor are
{0i i }, and 3D Hamiltonian of the harmonic oscillator will be the sum of three
commute operatorsH = Hx + Hy + Hz with

Hx = p2
x

2m
+ m

2
Ä2

xx2,

Hy =
p2

y

2m
+ m

2
Ä2

yy2, (31)

Hz = p2
z

2m
+ m

2
Ä2

zz2+mgz+m80,
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where the angular frequencies are given by the equations

Ä2
x(0) = ω2

x

(
1+ 0xx

ω2
x

)
,

Ä2
y(0) = ω2

y

(
1+ 0yy

ω2
y

)
, (32)

Ä2
z(0) = ω2

z

(
1+ 0zz

ω2
z

)
.

Based on the previous results one can obtain

Hx = hÄx

(
Ã
+
x Ãx + 1

2

)
,

Hy = hÄy

(
Ã
+
y Ãy + 1

2

)
, (33)

Hz = hÄz

(
Ã
+
z Ãz+ 1

2

)
− mg2

2Ä2
z

+m80.

The Hamiltonian for the 3D harmonic oscillator in nonhomogeneous gravitational
field can be rewritten as the sum of two contributionsH = He+ H0:

He = h
∑

i=x,y,z

Äi Ã
+
i Ãi ,

(34)

H0 = h

2

∑
i=x,y,z

Äi − mg2

2Ä2
z

+m80,

where the contributionHe is written as the product of creation and annihilation
operators, andH0 does not include operators and describes only the energy shift.

4. APPLICATION TO THE THERMODYNAMICS
OF TRAPPED ATOMS

The developed formalism can be applied for the computation of partition
function (sum over states) of the trapped quantum gas in nonhomogeneous gravi-
tational field. The grand canonical partition function is given by the equation
(Huang, 1987)

Z = Tr exp[−β(Ht − µN)], (35)

whereHt is the total Hamiltonian of the system,N is the particle number operator,
µ is chemical potential, andβ = T−1 is inverse temperature. As the matrix of
total Hamiltonian is diagonal, the result of computation of (35) is quite simple.
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For noninteracting Bose and Fermi gases we will have

ZB =
∏

nx ,ny,nz

[
1− z e−βEnx ,ny ,nz(0)

]−1
,

(36)
ZF =

∏
nx ,ny,nz

[
1+ z e−βEnx ,ny ,nz(0)

]
,

where z= exp(βµ′) is fugacity, and energyEnx ,ny,nz(0) = h(Äxnx +Äyny +
Äznz) with nx, ny, nz = 0, 1, 2,. . . is the function of the components of gravity
gradient tensor. The chemical potential in the Eq. (36)µ′ = µ− E0 absorbs the
energy shift (34). From the equations for partition functions (36) follow the equa-
tions for the grand thermodynamic potentials of trapped Bose and Fermi gases in
external gravitational field:

GB = β−1
∑

nx ,ny,nz

ln
[
1− z e−βEnx ,ny ,nz(0)

]
,

(37)
GF = −β−1

∑
nx ,ny,nz

ln
[
1+ z e−βEnx ,ny ,nz(0)

]
.

The number of particles and the internal energy for trapped Bose and Fermi gases
are obtained from (37):

NB =
∑

nx ,ny,nz

[
z−1 eβEnx ,ny ,nz(0) − 1

]−1
,

(38)

EB =
∑

nx ,ny,nz

Enx ,ny,nz(0)

z−1 eβEnx ,ny ,nz(0) − 1
,

and

NF =
∑

nx ,ny,nz

[
z−1 eβEnx ,ny ,nz(0) + 1

]−1
,

(39)

EF =
∑

nx ,ny,nz

Enx ,ny,nz(0)

z−1 eβEnx ,ny ,nz(0) + 1
.

Thermodynamical properties of trapped Bosons and Fermions are found as
the solutions of the system of the Eqs. (38) and (39). The variants of this formalism
in application to noninteracting trapped Fermi gas is given in (Butts and Rokhsar,
1997; Schneider and Wallis, 1998) and the study of thermodynamics of trapped
Fermions in external gravitational field is given in (Kulikov, in press).

5. FINAL REMARKS

This paper presents the formalism of quantization of the harmonic oscillator in
terms of creation and annihilation operators. The aim of the paper is to extend this
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formalism on the interaction of oscillator with external fields. We considered the
influence of homogeneous and nonhomogeneous electric and gravitational fields
on the properties of harmonic oscillator. Another aim of the paper is to apply this
technique for the study of thermodynamics of Bosonic and Fermionic ensembles
in gravitational and harmonic trapping potentials. Using the developed formalism
we constructed the partition functions and the equations for grand thermodynamic
potentials of noninteracting Bosons and Fermions and obtained the equations for
the number of particles and the internal energy of trapped Bosons and Fermions.
It is easy to see that the Eqs. (38) and (39) are written as the systems of two
equationsN = N(z, T, 0) andE = E(z, T, 0). The solutions of these equations
allow us to obtain interesting properties of trapped quantum gases at ultralow tem-
peratures in external gravitational field including microgravity applications. The
elimination of the parameterz from the system of equationsN = N(z, T, 0) and
E = E(z, T, 0) can give the dependence of the internal energy on the density of
particles, temperature, and components of gravity gradient:E = E(N/V, T, 0).
As a consequence, it allows us to obtain the equation for the specific heat of
trapped Bosons. The first equation in (38) leads to the dependence of critical tem-
perature of condensation on the gravitational contributions. As follows from (39),
the equations for chemical potential, the Fermi energy and the specific heat will
also depend on the diagonal components of gravity gradient tensor. These results
could yield substantial and new information about thermal properties of trapped
quantum ensembles in external gravitational field.
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